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Abstract
In this work, we examine a problem faced
by computer network administrators de-
fending their designated networks against
adversarial attacks. We assume that the
defender is able to hinder the attacker’s
progress by deploying deceptive services
called honeypots. Our goal is to find an
optimal allocation of honeypots that max-
imizes the resources required by the at-
tacker to infiltrate a key host of the com-
puter network. However, a major compli-
cation in this scenario is that the defender
might be aware only of a limited amount
of services that might be exploited by the
attacker in the target network. We use
game theory to model this scenario where
the attacker has actions unknown to the
defender and to find optimal strategies in
such a setting. We compare the results ob-
tained in this domain with the results ob-
tained in a game where both the defender
and the attacker have the same amount
of information about the vulnerabilities
in the computer network. We investigate
how the game dynamics change between
these two games in relation to the size of
the game and compare the strength of the
defender’s policies received from different
algorithms. We point out problems that
arise when the defender deploys a policy
computed using their limited information.
We propose several ways of increasing the
strength of the defender’s strategy and
highlight their limitations. Finally, we ex-
plore two of these proposed methods and
present the acquired results.

Keywords: game theory, network
security, dynamic honeypot allocation,
machine learning, imperfect information
games
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Abstrakt
V této práci zkoumáme problém, se kte-
rým se potýkají administrátoři počítačo-
vých sítí při snaze chránit svou síť před ne-
přátelskými útoky. Předpokládáme, že má
obránce sítě možnost bránit útočníkově
postupu pomocí falešných služeb zvaných
honeypoty. Našim cílem je nalézt strate-
gii rozmístění honeypotů, která maxima-
lizuje využití útočníkových prostředků k
infiltraci kritické infrastruktury. Velkým
problémem však je, že si obránce nemusí
být vědom všech služeb, které útočník
může využít k pohybu v počítačové síti.
Využíváme teorii her k modelování tohoto
scénaře, v němž má útočník akce, o kte-
rých obránce neví, a k nalezení optimál-
ních strategií pro oba hráče. Porovnáváme
výsledky obdržené na této doméně s vý-
sledky obdrženými na doméně, kde mají
oba hráči stejnou informaci o struktuře
počítačové sítě. Zkoumáme změnu herní
dynamiky těchto dvou her v závislosti na
jejich velikosti a porovnáváme sílu stra-
tegií, jež jsou výstupy různých algoritmů.
Upozorňujeme na problémy, které vzni-
kají, při aplikaci strategie spočítané obrán-
cem na základě jeho omezených informací.
Navrhujeme několik způsobů, jak zvýšit
sílu obráncovy strategie, a poukazujeme
na jejich limitace. V poslední řadě zkou-
šíme dva postupy pro zlepšení obráncovy
strategie a prezentujeme získané výsledky.

Klíčová slova: teorie her, síťové
zabezpečení, dynamická alokace
honeypotů, strojové učení, hry s
neúplnými informacemi

Překlad názvu: Strategie obránce v
bezpečnostních hrách s neznámými
akcemi útočníka
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Chapter 1
Introduction

The domain of computer network security is an example of a conflict between
two rational agents with opposing interests. With the rise of the use of
computer networks in the military (Xin and Bin, 2013), industry (Christin et
al., 2010), autonomous vehicles (Hussain and Zeadally, 2019), and many other
areas of life, there has also been an increase in attempts to compromise these
networks and to gain access to valuable information or to control the systems
mentioned above (Bhushan and Sahoo, 2017). In response to these attacks,
there has also been an increasing effort to prevent these malicious attackers
from achieving their goals. One of the ways a computer network administrator
can hinder the attacker’s advances is to introduce false vulnerabilities into
the network called honeypots. If the attacker attempts to utilize these false
vulnerabilities, they use their resources (e.g. computational time) and they
do not advance in the target network. Honeypots may also log the attacker’s
activity, thus informing the defender about the attacker’s progress in the
network. The honeypot technology as well as honeypot-related software and
analysis of recorded logs are described in detail in Nawrocki et al., 2016.
However, there are two main limitations to the use of honeypots. First, it
can be quite costly to set up services acting as false vulnerabilities, especially
if they are to deceive the attacker, therefore the defender usually has only
a limited number of honeypots at their disposal. Second, the defender can
set up these services only if they know about the possibility of the attacker
exploiting the real vulnerabilities. It is, however, possible that the defender
is unaware of some vulnerabilities in the network making it impossible to
set up honeypots for these hidden vulnerabilities (e.g. zero-day exploits).
The primary goal of this work is to produce a strategy for the placement of
honeypots which maximizes the attacker’s use of resources in a computer
network, where hidden vulnerabilities may exist.

The problem of finding an optimal strategy in a scenario, where two rational
agents have opposing interests, is thoroughly studied in the field of game
theory. Game theory allows for reasoning in domains, where there are multiple
rational agents having various degrees of information and varying interests.
However, one of the common assumptions in game theory is that the actions of
the individual agents are well-known. Therefore game theory does not provide
a simple solution to our problem with hidden vulnerabilities, where a subset of
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1. Introduction .....................................
the attacker’s actions is hidden from the defender. Nevertheless, we use game
theory to formally define our problem and use existing solution concepts to
find strategies for the defender. We evaluate these strategies against various
opponents and explore ways to improve the defender’s expected utility. Since
exact mathematical approaches have only a limited degree of scalability, we
also employ reinforcement-learning approaches for finding optimal strategies in
our domain. Additionally, we showcase problems arising from the complexity
of the space of all possible defender strategies. We consider a case in which
both players are unaware of the policy of the other player and a case in which
the attacker knows the defender’s strategy in advance.

In this work we present three main contributions. First, we present an
implementation of our domain in the OpenSpiel framework (Lanctot et al.,
2019) which enables the use of existing algorithms on our domain. Second, we
conduct experiments to ascertain whether there are major differences in the
quality of solutions provided by the individual algorithms. Third, we suggest
three ways in which the found solutions might be improved and try two of
these approaches. Subsequently, we present the results obtained by our novel
approaches and compare them with the solutions acquired by traditional
methods.

The structure of this work is as follows. This chapter serves as an in-
troduction to the researched topic. In Chapter 2, we present basic game
theoretic definitions and solution concepts. Then in Chapter 3, we formally
define the lateral movement domain and describe its implementation in
OpenSpiel. Subsequently, in Chapter 4, we introduce algorithms used to
find solutions and provide reasoning behind their choice. Next, in Chapter 5,
we describe conducted experiments and provide their results. Finally, in
Chapter 6 we summarise our findings and conclude this work. Additionally,
Appendix A presents the bibliography of sources for this work. Moreover,
in Appendix B, can be found implementation-specific experimental settings.
And lastly, Appendix C describes the structure of the project.
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Chapter 2
Introduction to Game Theory

Since this project is very closely related to game theory, this chapter serves as
a brief introduction to basic game-theoretic definitions and solution concepts
utilized in subsequent chapters. All of the following definitions are excerpts
from Shoham and Leyton-Brown, 2008. Game theory itself is the mathe-
matical study of interaction among independent, self-interested agents. It
has been applied in a number of fields including economics, psychology, and
computer science.

2.1 Types of Games

The most important definition for our problem is the definition of a perfect-
information game in extensive form.

Definition (Perfect-information game) A (finite) perfect-information
game (in extensive form) is a tuple G = (N, A, H, Z, χ, ρ, σ, u), where:.N is a set of n players;. A is a (single) set of actions;.H is a set of nonterminal choice nodes;. Z is a set of terminal nodes, disjoint from H;. χ : H 7→ 2A is the action function, which assigns to each choice node a

set of possible actions;. ρ : H 7→ N is the player function, which assigns to each nonterminal
node a player i ∈ N who chooses an action at that node;. σ : H ×A 7→ H ∪ Z is the successor function, which maps a choice node
and an action to a new choice node or terminal node such that for all
h1, h2 ∈ H and a1, a2 ∈ A, if σ(h1, a1) = σ(h2, a2), then h1 = h2 and
a1 = a2; and. u = (u1, ..., un), where ui : Z 7→ R is a real-valued utility function for
player i on terminal nodes Z.

3



2. Introduction to Game Theory..............................
The term of utility function deserves further explanation. Utility functions
are used to describe the interests of the individual agents in games. In our
case, the utility functions are mappings from terminal nodes (i.e. outcomes of
a game) to real numbers, which express the agent’s subjective preference for
a particular outcome as opposed to the other outcomes. The extensive form
enables us to keep the representation of our game relatively concise compared
to other available game models such as normal-form games. Additionally, the
extensive form accounts for the fact that players might take turns in choosing
actions and that the game might consist of multiple turns that happen one
after the other. In addition to the extensive form, we also need to represent
the fact that the players are not always aware of the actions of the other
player. To this end serves the concept of imperfect-information games.

Definition (Imperfect-information game) An imperfect-information
game (in extensive form) is a tuple G = (N, A, H, Z, χ, ρ, σ, u, I), where:.G = (N, A, H, Z, χ, ρ, σ, u, I) is a perfect-information extensive-form

game; and. I = (I1, ..., In), where Ii = (Ii,1, ..., Ii,ki
) is a set of equivalence classes

on (i.e., a partition of) {h ∈ H : ρ(h) = i} with the property that
χ(h) = χ(h′) and ρ(h) = ρ(h′) whenever there exists a j for which
h ∈ Ii,j and h′ ∈ Ii,j

In imperfect-information extensive form games the choice nodes are parti-
tioned into information sets. An information set includes all choice nodes that
appear identical to the player because the states of the game that correspond
to these choice nodes differ only in the part of the game which is hidden
from the player. The lack of information about the state of the game may
also come from the fact that the player does not have a complete record of
their own actions, or of the observed actions of other players. This concept is
explored in games of perfect recall.

Definition (Perfect recall) Player i has perfect recall in an imperfect-
information game G if for any two nodes h, h′ that are in the same information
set for player i, for any path h0, a0, h1, a1, h2, ..., hm, am, h from the root of
the game to h (where the hj are decision nodes and the aj are actions) and
for any path h0, a′

0, h′
1, a′

1, h′
2, ..., h′

m, a′
m, h′ from the root to h′ it must be the

case that:..1. m = m′;..2. for all 0 ≤ j ≤ m, if ρ(hj) = i (i.e., hj is a decision node of player i),
then hj and h′

j are in the same equivalence class for i; and..3. for all 0 ≤ j ≤ m, if ρ(hj) = i (i.e., hj is a decision node of player i),
then aj = a′

j

G is a game of perfect recall if every player has perfect recall in it.

4



...................................... 2.2. Strategies

If any of the conditions in the definition above does not hold for any player
of the game, the game is of imperfect recall. Additionally, all games of
perfect-information are by definition games of perfect recall. In our domain,
we assume both the attacker and the defender to have perfect recall. Another
important concept in game theory is the degree of cooperation of players in a
game. In the general case player’s utility might not be related to the utility of
any other player, however, there are scenarios, where the interests of players
are directly opposed. This is modeled by zero-sum games.

Definition (Zero-sum game) A two-player extensive form game is zero-
sum, if for all z ∈ Z, u1(z) = −u2(z).

The definition of a zero-sum game represents the fact that the gain of one
player inevitably causes harm to the other player.

2.2 Strategies

One of the goals of game theory is to be able to identify optimal behavior
in various games. However, there is no simple answer to the question of
what optimal behavior in games is. Game theory provides multiple solution
concepts, many of which can be further expanded to find optimal solutions
under slightly different criteria. A solution of a game is usually given in the
form of a strategy that satisfies specified optimality criteria. In an extensive
form imperfect-information game strategies are defined upon the individual
information sets. Pure strategies are a category of strategies that specify
in each information set one specific action to be played.

Definition (Pure strategies) Let G = (N, A, H, Z, χ, ρ, σ, u, I) be an
imperfect-information extensive-form game. Then the pure strategies of
player i consist of the Cartesian product ΠIi,j∈Ii χ(Ii,j).

However, in imperfect-information games, it is often beneficial to randomize
over the set of all available actions according to a given probability distribu-
tion, because it makes the player hard to predict. There are two categories of
strategies that deal with randomization over available actions. One of these
categories contains mixed strategies which randomize over pure strategies.
The other consists of behavioral strategies which randomize independently
over available actions at each information set. The difference is that when
adhering to a mixed strategy the player decides at the beginning according to
a given probability distribution which pure strategy they are going to play for
the rest of the game, whereas in the case of adhering to a behavioral strategy,
the player repeatedly randomizes throughout the course of the game each
time they encounter a choice node according to a probability distribution
of its information set. A tuple s = (s1, ..., sn) composed of strategies of the
respective players is called a strategy profile.

5



2. Introduction to Game Theory..............................
2.3 Solution Concepts

The notion of best response is a stepping stone for arguably the most
important solution concept of the Nash equilibrium.

Definition (Best response) Player i’ best response to the strategy profile
s−i is a strategy s∗

i ∈ Si such that ui(s∗
i , s−i) ≥ ui(si, s−i) for all strategies

si ∈ Si, where s−i denotes strategy profile of all players except the player i.

In other words, best response is a strategy that maximizes the player i’s
utility when they play with players who follow strategies known to the player
i beforehand.

Definition (Nash equilibrium) A strategy profile s = (s1, ..., sn) is a Nash
equilibrium if, for all agents i, si is a best response to s−i.

One of the reasons why Nash equilibrium is such an important solution
concept is that it is a stable strategy profile because any deviation from it
by any player would decrease their utility. Other reasons for its significance
entail the fact that every game has at least one Nash equilibrium (Nash’s
theorem), and that some other solution concepts in special cases coincide with
Nash equilibria, such as the minmax, and maxmin strategies in two-player
zero-sum games (Minimax theorem). A minor modification to the concept of
Nash equilibrium provides ϵ-Nash equilibrium which reflects the fact that
computation of an exact Nash equilibrium is in most domains infeasible, and
as such a formal definition of an approximate Nash equilibrium is required.

Definition (ϵ-Nash equilibrium) Fix ϵ > 0. A strategy profile s =
(s1, ..., sn) is an ϵ-Nash equilibrium if, for all agents i and for for all strategies
s′

i ̸= si, ui(si, s−i) ≥ ui(s′
i, s−i)− ϵ.

2.4 Limitations of game theory

Even though algorithms for computing optimal solutions to the criteria
mentioned above exist, in practice the domains are often extensive to a
degree that an exact solution becomes intractable. Moreover, if the game is
happening in real-time, and the domain changes dynamically, the solutions
would need to be computed anew after every change in the environment. These
two reasons motivate the application of reinforcement learning algorithms to
game-theoretic problems in areas, where traditional solution methods face
difficulties.

6



Chapter 3
Lateral Movement

3.1 Description

The lateral movement game described in Horák et al., 2019, and Sayed
et al., 2023 represents a scenario in cyber security featuring two players: an
attacker and a defender. The goal of the attacker is to reach a specific
host in the network, such as the central database, using vulnerabilities in the
network. The defender aims to hinder the attacker’s progress by deploying
decoys, called honeypots, which expend the attacker’s resources and alert
the defender about the attacker’s progress in the network. To model the
computer networks with vulnerabilities we use directed acyclic graphs. An
example of an abstract computer network represented by a graph can be seen
in Figure 3.1. This graph serves as a leading example for most of the results
presented in this work.

Figure 3.1: Example network represented by a graph

7



3. Lateral Movement ..................................
We assume that there initially exists a singular host in the network through

which the attacker can enter the network and that the initial point of infection
is well-known. The game consists of a specified number of stages. Each stage
begins with the defender choosing a small number of services to honeypot (i.e.
a subset of edges in the graph). Then the attacker chooses which vulnerabilities
in the network they exploit to compromise additional hosts (edges leading
from infected nodes). The attacker may do so until they reach their goal
or until they trigger a honeypot. Upon triggering a honeypot, the game
progresses into a new stage and the defender may choose a new set of services
to honeypot. The game ends either when the attacker reaches their goal or if a
specified number of stages elapses. We introduce the notion of vulnerabilities
hidden from the defender. These hidden vulnerabilities represent the fact
that the defender might not be aware of all the vulnerabilities that exist in the
computer network and thus is unable to allocate honeypots to these hidden
vulnerabilities. The attacker has full information about the vulnerabilities
in the network and thus may utilize the hidden vulnerabilities to infiltrate
hosts. We also introduce a version of the game, where the honeypots have a
given probability of defect. If the attacker uses a honeypot and it defects, the
attacker continues to infiltrate the computer network uninterrupted and the
defender receives no information about the attacker’s progress. We do this to
investigate the properties of more robust strategies learned by the defender
in such games.

From a game-theoretic standpoint the game is zero-sum because the players
have directly opposing interests, as well as imperfect-information because
the individual players are not aware of what the actions of the other player
are. Furthermore, we model the game as an extensive form game, where
players take turns in a sequential manner. We assume the games to be of
perfect recall, imposing no limits to the amount of information the individual
players can remember. However, we break the property of perfect recall in
the information set representation used by reinforcement learning agents in
favor of decreasing the size of the state space and faster convergence rate of
the algorithms. This is possible due to the fact that multiagent reinforcement
learning algorithms do not rely on the property of perfect recall, unlike some
of the strictly mathematical approaches. There are chance nodes in the lateral
movement game with defect that determine the outcome of the attacker’s use
of a honeypot. If the probability of defect is 0, the game is without chance.
Lastly, the players receive their respective utilities whenever a terminal state
is reached.

3.2 Formal Game Definition

Formally the scenario described in the previous section can be modeled by a
directed acyclic graph G = (N, E), where the set of nodes N represents hosts
of the computer network, and the set of directed edges E represents the vul-
nerabilities. We define sets Eh and Ek which stand for vulnerabilities hidden
from the defender and vulnerabilities known to the defender, respectively. Set

8



.................................. 3.3. Graph Generation

E is partitioned into Eh, and Ek, therefore E = Eh ∪ Ek, and Eh ∩ Ek = ∅.
There are costs associated with the edges, which are expressed by the function
fc : E → R+. Moreover, each edge is also assigned to a security perimeter
tied to a multiplicative constant which models the attacker’s penalization
upon using a honeypot. This is denoted by fp : E → R+. Furthermore, let
P = {1, 2} denote the set of players, where 1 stands for the defender, and
2 stands for the attacker. Each stage begins with the defender allocating k
honeypots to arbitrary known edges of the graph. The set of honeypots at
stage s is denoted Hs ⊆ Ek, |Hs| = k. After the placement of the honeypots,
the attacker takes their turn. Let It denote a set of nodes infected by the
attacker at step t. We define I0 = {n0}, where n0 is the initial well-known
point of infection. At step t ≥ 1 the attacker may choose to infect any node
nj for which there exists an edge eij ∈ E leading from node ni ∈ It−1 to
nj . If eij /∈ Hs, where s stands for the current stage, then It = It−1 ∪ {nj},
and the attacker chooses another node to infect at step t + 1 in the same
way. If eij ∈ Hs, then in the attacker does not infect nj , thus It = It−1,
both players receive observations about the attacker’s use of the honeypot,
and the game either progresses into a new stage or terminates if the stage
number reaches a terminal value. If there is defect present in the game,
whenever the attacker chooses eij ∈ Hs, a random chance outcome is sampled
according to a probability distribution p(d) = q, and p(d) = 1− q, where d
denotes the defect of a honeypot, and d denotes the standard behavior. If the
honeypot malfunctions, then It = It−1 ∪ {nj}, the stage remains the same,
no observations are delivered to the players and the attacker proceeds to
infect another node. Conversely, if the honeypot functions properly the game
dynamics are the same as in a situation where the attacker uses a honeypot
in the game without defect described above.

Let Es = (e1, ..., en) denote the sequence of edges used by the attacker in
stage s. If stage s was terminated by the attacker triggering a honeypot, then
the defender’s reward for the stage is Rs

1 =
∑n−1

i=1 fc(ei) + fc(en) · fp(en). If
stage s is instead terminated by the attacker reaching the terminal node, then
the defender’s reward is Rs

1 =
∑n

i=1 fc(ei)− c, where c is a positive constant
representing the attacker’s reward for reaching the terminal node. Since the
game is zero-sum, the attacker’s reward is always equal to the negative value
of the defender’s reward Rs

2 = −Rs
1. The terminal reward for player i is then

Ri =
∑

s∈S Rs
i normalized to interval [−1, 1] (S denotes the set of all stages).

The goal of the players is to maximize their respective terminal rewards.

3.3 Graph Generation

The implementation of the lateral movement game described in this work
contains a random generator for the host/vulnerability graphs, as well as
tools for specifying the hyperparameters of the game. The random generation
is taken from Horák et al., 2019, and is described in detail in Algorithm 1.
However, some parts of the algorithm need further explanation. The nodes
are sorted at line 6 in ascending order with regard to their Euclidean distance

9
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Algorithm 1 Graph generation

1: n0 ← (0, 0)
2: nn ← (20, 20)
3: for i in 1 . . . n− 1 do
4: ni ← rand([0, 20]2)
5: end for
6: N ← sort(n0, . . . , nn)
7: for i in 0 . . . n− 1 do
8: Neighi = FindNearestNeighbors(ni, d)
9: end for

10: E ← {}
11: for i in 0 . . . n− 1 do
12: for j in 0 . . . d− 1 do
13: x← Neighi [j]
14: if EdgeDoesNotExist(i, x) then
15: E ← E ∪CreateEdge(i, x)
16: end if
17: end for
18: end for
19: Eh ← SelectHiddenEdges(E)
20: Ek ← E \ Eh

21: G← (N, Ek ∪ Eh)
22: if G is not valid then
23: go to 3
24: end if

from n0. Euclidean distance is also used for the purpose of finding nearest
neighbors at line 8. An edge may be chosen to be a hidden edge only if
the origin of the edge has an out-degree greater than 1, and the end has an
in-degree greater than 1. A graph is considered an invalid graph if the amount
of edges that satisfy this condition is lesser than the value of the number of
hidden edges hyperparameter. Similarly, if the graph contains a node with a
0 in-degree, or 0 out-degree, it is also considered invalid. The only exceptions
to this rule are n0 and nn which always have 0 in-degree and 0 out-degree,
respectively. Lastly, if the graph is too sparse, it is too considered invalid.
The generation of the graph is repeated until either a valid graph is generated
or a specified amount of invalid graphs has been generated, in which case the
generation terminates with an error. A possible layout of the nodes generated
by the algorithm can be seen in Figure 3.2. The figure depicts the leading
example that can be seen in Figure 3.1, where the layout of nodes was altered
to make the figure less cluttered.

For a graph generated by the above-described algorithm, costs for edges are
computed using several functions. The function f(eij) = ∥ni−nj∥2

∫ 1
0 g(λni+

(1−λ)nj) dλ, where g(x, y) = x + y, has many desirable properties for fc, but
the values obtained by this function can be quite large. Therefore the output

10



.................................. 3.3. Graph Generation

of f is normalized to the interval [0, 3], which is denoted by fnorm. Final
cost of an edge is then fc(eij) = (fnorm ◦ f)(eij). Additionally, three security
perimeters for nodes are defined based on their Euclidean distance from
nn. Edges always inherit their security perimeter from the node they lead
into. The security perimeters are depicted in Figure 3.2 by the two dashed
circles. Subsequently, the generation of costs and assignment of security
perimeters can be seen in Figure 3.3. Each edge is labeled by its id and its
cost. The edge colors correspond to their security perimeter assignments. We
use the distance thresholds for the security parameters equal to 12, and 18
for security perimeters (2, 3) and (1, 2), respectively. The security perimeters
are associated with multiplicative constants (κ1, κ2, κ3) = (1, 1.5, 4). We
denote this mapping fκ : N → {κ1, κ2, κ3}. The final penalization function
for honeypotted edges is then fp(eij) = fκ(nj).

Figure 3.2: Nodes generated by Algorithm 1

Figure 3.3: Edges generated by Algorithm 1

11
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3.4 Game Parametrization

User may specify hyperparameters for both the generation of the graph and
the game itself. The implementation provides the following hyperparameters:. number of honeypots. seed. density. number of nodes. number of stages. number of hidden edges. enable hidden edges. defect rate

The number of nodes and density define n and d in Algorithm 1, respectively.
The number of honeypots corresponds to k in the formal game definition and
determines how many honeypots the defender is able to place in each stage of
the game. Subsequently, the number of stages defines the maximum number
of stages played before the game terminates. The game may terminate in
an earlier stage if the attacker reaches the terminal node. Additionally, the
seed specifies the random number generator seed for the graph generation.
Furthermore, the number of hidden edges controls |Eh|. An important thing
to note is that the hidden edges are always generated regardless of whether
they are used in the game or not. Whether or not the attacker can use
the generated hidden edges for the infection of nodes is determined by the
enable hidden edges parameter. Lastly, defect rate defines the probability of
a honeypot defect, i.e. p(d).

3.5 Information Sets

The OpenSpiel framework offers two primary forms of representation of the
information sets a given state of the game belongs to. The first of these
forms is an information state string. The information state string is an
arbitrary identifier of an information set used mainly by algorithms that
perform computations on the entire game trees. The information state string
in our game satisfies a property of perfect recall that there is a single sequence
of player’s actions that leads into a given information set. This is required
by some of the algorithms utilized to find optimal strategies. The other
representation is that of an information state tensor. Information state
tensor is a representation used primarily by agents utilizing neural networks.
As such the information state tensor is an array of floating point numbers
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................................... 3.5. Information Sets

that is used directly as an input to the input layer of the neural networks.
Therefore it is desirable to represent the information set in the most compact
way possible. Since perfect recall representation is not necessary for the
reinforcement-learning agents, we give up the perfect recall property for the
information state tensors by grouping states of the game which are results of
sequences of actions in a different order but are otherwise equivalent. This
helps the deep learning agents to converge faster to equilibrium strategies in
our experimental evaluation.

The information state string contains the following information: the current
stage of the game, a player id, known actions played by the attacker in each
stage, and known actions played by the defender in each stage. These fields
are delimited by the pipe symbol, and actions played in different stages of the
game are delimited by a semicolon. In the information state tensor, however,
the representation is not as straightforward. The stage number and player
identifier both use one-hot encoding. Moreover, the tensor contains one bit
for each node in the graph and one bit for each known edge per stage of the
game. Value 0 of these bits signifies that the node is not infected or that a
honeypot was not placed on the given edge in a particular stage. Conversely,
value 1 means that the node is infected or that there was a honeypot placed
on that edge in the given stage.

Figure 3.4: Information set example graph

Let us see an example of the information set generation on the graph
depicted in Figure 3.4. Consider the following sequence of actions: first,
the defender places honeypots on edges 2 and 4, then the attacker infects
node 1 via edge 0 (i.e. e0,1) and tries to infect node 3 via edge 4 triggering
the honeypot and progressing the game into a new stage. In the second
stage (numbered stage 1, since numbering starts at 0), the defender places
honeypots on edges 3 and 1 and the attacker infects node 3 via edge 2 reaching
their goal and thus terminating the game. These actions are not part of
an optimal strategy and serve only as an example for the generation of the
information set identifiers. The defender’s information state string can be
seen in Figure 3.5. Similarly, the attacker’s information state string can be
seen in Figure 3.6. Additionally, the information tensors for the defender and
the attacker are depicted in Figure 3.7 and Figure 3.8, respectively.
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3. Lateral Movement ..................................

Figure 3.5: Defender’s information state string

Figure 3.6: Attacker’s information state sting

Figure 3.7: Defender’s information state tensor

Figure 3.8: Attacker’s information state tensor

A couple of things to note: the defender does not know about the attacker
having infected node 1, only about the infection of the node from which the
spotted attack originates i.e. node 0, but has perfect information about their
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...................................... 3.6. OpenSpiel

honeypot placement, which the attacker lacks. Additionally, if the defender
placed their honeypots in a different order, the information state tensors
would stay the same, whereas the information state strings would differ.

3.6 OpenSpiel

In this section, we provide a brief description of the OpenSpiel framework and
the reasoning behind our use of OpenSpiel. OpenSpiel introduced in Lanctot
et al., 2019 is an open-source collection of environments and algorithms
created and maintained by DeepMind. Its purpose is to facilitate research
of reinforcement learning and search/planning in games. The environments
are developed mainly in C++, and exposed to a Python API with the use of
pybind11. The majority of algorithms and examples are then implemented
in Python using this API.

There are several benefits to utilizing OpenSpiel for custom game environ-
ments. OpenSpiel provides a unified interface through which many baseline
algorithms for planning in games, as well as reinforcement learning algorithms,
can be applied to custom domains. Furthermore, many of these baseline
algorithms have already been tested, and their functionality has been verified.
The full list of algorithms, and their testing status is available in the official
OpenSpiel documentation. Additionally, the OpenSpiel framework accounts
for many game-theoretic concepts, such as player strategies, simultaneous
turn games, extensive form games, games with perfect, and imperfect infor-
mation, games with perfect, and imperfect recall, and chance elements in
games. Moreover, OpenSpiel provides a way to include hyperparameters into
the game model. Another benefit to using OpenSpiel is that it comes with
tests for correct integration of the unified game interface into the custom
domains and scripts that simplify compilation, building, and testing of the
entire project. Lastly, OpenSpiel contains tools for the evaluation of strategies
in the form of expected player utilities and convergence to a Nash equilibrium.

The files created for the purposes of this project are described in Appendix C.
When compiling from source, the default procedure for the building of Open-
Spiel described in Lanctot et al., 2019 compiles the lateral movement domain
as well. It also runs the lateral movement tests by default. The Python
scripts require the installation of requirements included in the project and
the setting of PATH and PYTHONPATH which is too described in the mentioned
OpenSpiel article.
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Chapter 4
Algorithms

4.1 Motivation

When deciding what algorithms to use for our experiments, we wanted to in-
clude both state-of-the-art and baseline algorithms implemented in OpenSpiel.
We chose algorithms denoted as thoroughly-tested in the OpenSpiel docu-
mentation to minimize the risk of encountering incorrect behavior. Among
the baseline algorithms, we chose sequence-form linear programming (SFLP,
Koller et al., 1994) and counterfactual regret minimization (CFR, Zinkevich
et al., 2007). In terms of state-of-the-art algorithms, we selected deep coun-
terfactual regret minimization (Brown et al., 2019), exploitability descent
(ED, Lockhart et al., 2020), and neural fictitious self-play (NFSP, Heinrich
and Silver, 2016). The thought process behind the selection was to use the
baseline algorithms on small game trees to validate the implementation of
our domain in the OpenSpiel framework, as well as the function of the more
complex state-of-the-art algorithms on our domain, then scale up the size of
the game and drop algorithms infeasible on larger domains. Since multiple
Nash equilibria often exist in nontrivial domains, we also wanted to compare
the strategies found by the algorithms to ascertain whether some of the
algorithms find strategies yielding on average higher utilities for the defender
than others.

During the experimental evaluation, however, we discovered that the execu-
tion time of ED was 25 times as long as that of NFSP, presumably due to the
way loss is calculated on the entire game trees in each iteration, making the
runtime at least 17 hours on medium domains, where exact methods are still
feasible. Because of that, we decided to exclude ED from our experiments.
Similarly, the execution of deep CFR was 15 times slower than that of NFSP
on medium-sized domains making the runtime about 7 hours. These runtime
estimates have been computed for the number of iterations used on trivial
domains and it is possible that the number of iterations would need to be
larger in order to obtain sufficient results on medium-sized domains which
would inflate these figures further. Additionally, in large domains, a single
iteration of deep CFR did not terminate in 10 minutes making the minimum
estimate of runtime in large domains about 14 days and possibly much longer.
Since the primary motivation behind using deep CFR was its scalability, we
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4. Algorithms......................................
also decided against using it in our experiments. Due to these reasons only
SFLP, CFR, and NFSP are discussed in more detail in this work.

4.2 Sequence-Form Linear Programming

Sequence-form linear programming utilizes the fact that the problem of
finding a Nash equilibrium in a two-player perfect recall zero-sum game can
be expressed by a linear program. This is due to the fact that the Nash
equilibrium is in such games equivalent to a pair of max-min strategies. The
classic linear program formulation is defined for a normal-form game which
is represented by a payoff matrix for each possible strategy combination of
the two players. The solution of the linear program can then be found in
polynomial time in the size of the payoff matrix. The problem with this
approach is, however, that the size of the payoff matrix is exponential in the
size of the game tree representation making it infeasible for any practical
problems.

The above-mentioned issue is addressed by Koller et al., 1994 in creating
a linear program equivalent to the normal-form problem formulation but
decreasing its size to only linear in the size of the game tree. This decrease in
size is due to defining strategies on the sequence form, instead of converting
the game tree into an equivalent normal-form game. Sequence form assumes
that the game is of perfect recall. In perfect recall games, there is a unique
path from the root of the game tree to an arbitrary node a. The actions of
player k played on such a path are denoted by σk(a) and are called a sequence
of choices of player k leading to a. Additionally, let πk and µk denote a pure
strategy and a mixed strategy for player k respectively. The realization
weight of a under µk is then the sum of the probabilities µk(πk) over all
the pure strategies whose choices match σk(a) and is denoted by µk(σk(a)).
Lastly, let β(a) denote the product of chance probabilities on the path to a.
We include in this section the sequence-form linear programming definition
from Koller et al., 1994 which is also used in its OpenSpiel implementation.
The primal problem is as follows:

minimize
y, p

eT p (4.1)

subject to: −Ay+ET p ≥ 0 (4.2)
−Fy =−f (4.3)

y ≥ 0 (4.4)
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Additionally, the dual problem is:

maximize
x, q

−qT f (4.5)

subject to: xT (−A)−qT F ≤ 0 (4.6)
xT ET = eT (4.7)
x ≥ 0 (4.8)

Variables x and y represent mixed strategies for the individual players.
Variable x is composed of components that represent µ1(σ) for each σ ∈ S1,
where S1 is the set of all sequences for player 1. Similarly y represents
a mixed strategy for player 2 on their sequences. The utility functions of
the linear programs determine the expected payoff that player 1 receives.
Unconstrained variables p and q are derived from the dual of the best response
linear program which we did not include in this work for the sake of brevity.
Let |Uk| denote the number of information sets of player k, and |Dk| denote
the number of all choices of player k. Matrices F, and E are matrices of 1’s
of dimensions (1 + |U2|)× (1 + |D2|), and (1 + |U1|)× (1 + |D1|), respectively.
Similarly, vectors f and e are vectors of 1’s of sizes (1 + |U2|) and (1 + |U1|).
Constraints (4.3), (4.4), and (4.7), (4.8) ensure that y and x, respectively,
represent mixed strategies. Lastly, matrix A of size (1+ |D1|)× (1+ |D2|) is a
payoff matrix. The payoff contribution of sequences σ1 and σ2 is determined
by those leaves a such that σ1(a) = σ1 and σ2(a) = σ2. More than one leaf a
may define the same pair of sequences due to chance moves. The entries of
A are then

∑
a∈σ(a) β(a)h1(a), where h1(a) is the utility function of player 1

in leaf a. Entries of A which do not correspond to any leaves are equal to
0. A detailed explanation of the rationale behind the sequence-form linear
programming problem formulation as well as the derivation of the linear
programs included in this work can be found in Koller et al., 1994.

4.3 Counterfactual Regret Minimization

Counterfactual regret minimization is an iterative algorithm for finding ap-
proximate Nash equilibria in two-player zero-sum extensive-form games. It
leverages the fact that in zero-sum games minimizing average overall regret
leads to a strategy that converges to a Nash equilibrium. Furthermore, in
this algorithm, the minimization of overall regret is achieved through the
minimization of immediate counterfactual regret terms which provide an
upper bound for the overall regret.

For a more detailed description of the algorithm, we need first to define
counterfactual utility denoted ui(σ, I) to be the expected utility given
that information set I is reached and all players play using strategy profile σ
with the exception that player i plays to reach I. Additionally, let πσ(h, h′)
denote the probability of going from history h to history h′, and Z the set of
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terminal nodes, then counterfactual utility is defined as:

ui(σ, I) =
∑

h∈I,h′∈Z πσ
−i(h)πσ(h, h′)ui(h′)
πσ

−i(I)

Then we can define immediate counterfactual regret at time T to be:

RT
i,imm(I) = 1

T
max

a∈A(i)

T∑
t=1

πσt

−i(I)(ui(σt|I→a, I)− ui(σt, I))

where σt|I→a is a strategy profile identical to σ except that player i always
chooses action a in information set I. Finally, the relationship between
average overall regret and immediate counterfactual regret is:

RT
i ≤

∑
I∈Ii

max(RT
i,imm(I), 0)

The benefit of minimizing immediate counterfactual regrets is that it can be
done independently in each information set by determining σi(I). To this
end serves the following formula which defines counterfactual regret for an
information state-action pair.

RT
i (I, a) = 1

T

T∑
t=1

πσt

−i(I)(ui(σt|I→a, I)− ui(σt, I))

Each iteration of the algorithm then consists of three stages:..1. Get a strategy for the current iteration which is based on RT
i (I, a)...2. Compute counterfactual utilities for information sets using the current

strategy...3. Compute RT +1
i (I, a) using counterfactual utilities.

The average strategy obtained from the individual strategies in their respec-
tive iterations satisfies the property of minimizing immediate counterfactual
regrets, thus minimizing the average overall regret and converging to a Nash
equilibrium strategy according to the following theorem:

Theorem In a zero-sum game at time T, if both player’s average overall
regret is less than ϵ, then σT is a 2ϵ equilibrium.

From the fact that the computation of counterfactual regrets, and counterfac-
tual utilities require full traversal of the game tree, it is easy to see that CFR
does not scale as well as algorithms using generalization on information sets.
For more information about CFR as well as additional theoretical properties
refer to Zinkevich et al., 2007 which served as a source for this section.
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4.4 Neural Fictitious Self-Play

The key concept of general self-play is the repeated play of two or more
agents who gradually improve their strategies over a number of iterations.
This is mostly done by finding a best response to the opponent’s strategy in
each iteration and incorporating this best response strategy into the player’s
average strategy. In zero-sum games, the average strategy created by such an
iterative process converges to a Nash equilibrium strategy.

Fictitious self-play (FSP) is a sample- and machine learning-based
class of algorithms that approximate this behavior in extensive-form games.
The main motivation behind this approach is solving large domains. In
FSP each agent stores two datasets of their experience in self-play: MRL

stores transition tuples (st, at, rt+1, st+1) for approximation of state-action
values, and tuples (st, at) are stored in MSL which is used for approximation
of agent’s own average strategy during the self-play period. An arbitrary
reinforcement learning algorithm may be used on MRL to approximate state-
action values. Similarly, any supervised learning algorithm can be used for
average strategy approximation. Neural fictitious self-slay (NFSP) uses
for both reinforcement learning and supervised learning algorithms deep
neural networks for their respective purposes.

NFSP introduces a deep neural network Q(s, a|θQ) to predict state-action
values using off-policy reinforcement learning. The resulting state-action
values define an approximate best response strategy β = ϵ-greedy(Q) which
selects a random action with probability ϵ and otherwise chooses the action
that maximizes the predicted state-action value. A separate neural network
Π(s, a|θΠ) imitates the agent’s own past best response behavior using super-
vised classification. It maps states to action probabilities and defines the
agent’s average strategy π. During self-play, the agent uses a mixture of the
two strategies which is determined by an anticipatory parameter η in the
following way:

σ =
{

ϵ-greedy(Q) with probability η

Π with probability 1-η

This policy assignment is sampled before each playthrough of the game.
During evaluation, only the average strategy estimated by network Π is used
as it converges to a Nash equilibrium strategy. For a more detailed description
of the algorithm refer to Heinrich and Silver, 2016.
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Chapter 5
Experimental Evaluation

In our experiments, we model a scenario where the defender has only partial
information about the computer network and its vulnerabilities. This is
represented by a pair of graphs G = (N, Ek) and G′ = (N, Ek ∪ Eh). These
two graphs model the same network, where G is the game available to the
defender without the unknown vulnerabilities and G′ is the full game available
to the attacker. We also denote the full game G′ associated with a partial
game G by expression G′ ← G. The comparison of the two graphs can be
seen in Figure 5.1, where we assume Eh = {e1,3, e3,5} (game G is located on
the left-hand side of the figure, and G′ is located on the right-hand side).

Figure 5.1: Comparison of G and G′

In our experiments, we measure how well an optimal strategy learned by the
defender in G translates to game G′. Let s = (s1, s2) and s′ = (s′

1, s′
2) denote

a Nash equilibrium strategy in games G and G′, respectively. Additionally,
let β′

2 denote a best response strategy to strategy s1 in game G′. Finally, let
u1(s1, s2|G) denote the expected utility for the defender in game G under
strategy profile s = (s1, s2). Our experiments consist of measuring the
defender’s expected utility under two strategy profiles s′

NE = (s1, s′
2) and

s′
β = (s1, β′

2) in the full game, i.e. u1(s′
NE|G′) and u1(s′

β|G′). Strategy profile
s′

NE models a scenario in which both agents learn to play optimally in their
respective games without any prior knowledge of the opponent’s strategy. On
the other hand, s′

β models a scenario where the defender’s strategy is known
to the attacker in advance and thus the attacker is able to exploit it. Both
scenarios have a basis in real-life. Another property that we observed in some
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5. Experimental Evaluation................................
of our experiments is NashConv of strategies defined in Lanctot et al., 2017
as follows:

NashConv(σ) =
∑n

i maxσ′
i∈Σi

ui(σ′
i, σ−i)− ui(σ)

NashConv is a sum of the increases in utility each player would gain if
they played a best response strategy to the rest of the strategy profile
instead of their current strategy. It can therefore be interpreted as a distance
from a Nash equilibrium because NashConv in a Nash equilibrium is equal
to 0. Additionally, if NashConv(σ) = ϵ, then σ is at least an ϵ-Nash
equilibrium. Consequently, it verifies that the algorithms did converge to
an ϵ-Nash equilibrium and that we do not observe diverging strategies. The
main limitation of NashConv is that it requires the computation of best
response strategies and utilities for strategy profiles which is infeasible for
large domains. An approximation of best responses and utilities may be
utilized as an alternative in such cases but because NashConv is a relatively
fine measurement the value of such results is poor. Additionally, similar
information is provided by the comparison of u1(s′

NE|G′), and u1(s′
β|G′),

therefore NashConv is not included in experiments on large games.
The above-described measurements were obtained on three classes of games:. trivial games - games solvable by all algorithms, solutions may be vali-

dated manually.medium-sized games - the maximum size of games, where sequence-form
linear programming provides a solution. large games - computationally infeasible for exact algorithms, solved only
by reinforcement learning agents

For each of these classes, 10 games were generated by the random generator
described in Section 3.3. Hyperparameters for the games were selected
based on experiments conducted in Horák et al., 2019. The hyperparameter
configuration is described in Appendix B. The evaluation of the experiments
is different for large games and for the two smaller-sized classes.

For trivial games and medium-sized games SFLP, CFR, and NFSP were
used to compute s = (s1, s2) and s′ = (s′

1, s′
2). Subsequently, s1 computed

by each algorithm faced off against s′
2 of all of the algorithms. Moreover,

s′
β = (s1, β′

2) was computed for each of the s1 strategies. For large games,
since SFLP and CFR become infeasible, both s and s′ are found using NFSP
exclusively, and β′

2 is estimated with the use of deep Q-learning (DQN, Mnih
et al., 2015). The expected utilities are approximated by repeated random
game tree traversals determined by the given strategy profile. Subsequently,
we measure the means of differences in the expected utilities of two strategies
to compare their strength. In addition to the means, we also present their
confidence intervals. We chose to measure differences because we assumed
that the expected utilities may vary across the individual games but the
variance of their differences would be low, thus providing a tighter confidence
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interval. We used 95% confidence intervals. In order to compute confidence
intervals, we assumed the differences to be independent samples from a
normally distributed population with unknown mean and variance. There
is not enough evidence to reject the null hypothesis that the differences
come from a normal population. Furthermore, we did measure the mean of
NashConv of the computed strategies but we did not determine its confidence
intervals as it was not the primary focus of this work and the presented tables
would become cluttered.

For NFSP, different configurations of hyperparameters were tested, and the
configuration with the best convergence to a Nash equilibrium in game G of
trivial and medium size was used for the experiments and is presented in this
work. The choice of hyperparameters was primarily inspired by Heinrich and
Silver, 2016. Some concessions were made due to time and hardware limita-
tions. Although we have made attempts to choose optimal hyperparameters
for our domain, it is possible that hyperparameter configuration with a faster
convergence rate exists, as hyperparameter tuning is a complex topic that is
outside of the scope of this work.

All results have been obtained on a computer equipped with Intel Core
i5-8600K CPU and 16 GB of available RAM. Attempts to increase the
performance of NFSP agents by having TensorFlow utilize NVIDIA GeForce
GTX 1070 Ti GPU have been made, however, there was about 80% increase
in execution times upon utilizing the GPU, therefore the experiments were
conducted using solely the CPU.

5.1 Lateral Movement

In this section, we compare the quality of solutions provided by CFR, SFLP,
and NFSP. For that purpose, we introduce a baseline utility against a Nash
equilibrium opponent and against a best responder. These baseline utilities
are determined by strategy profiles s′

SFLP = (s1, s′
2), and sβ

SFLP = (s1, β′
2),

respectively. Both s1 and s′
2 in these strategy profiles were found by SFLP. The

baseline defender utilities are then denoted u1(s′
SFLP|G′) and u1(sβ

SFLP|G′).
The average difference between the utility of a given strategy profile and the
baseline Nash equilibrium utility is presented in our experiments. This average
difference is denoted by ud(s1, s′

2) = 1
|G′|

∑
G′∈G′ u1(s1, s′

2|G′)− u1(s′
SFLP|G′).

Similarly, we define the average difference between a given strategy profile
and the baseline defender’s utility against a best responder to be uβ

d (s1, β′
2) =

1
|G′|

∑
G′∈G′ u1(s1, β′

2|G′)− u1(sβ
SFLP|G′).

Moreover, we examine how well the strategy s1 translates into game G′. To-
ward this end, we introduce notation for the average difference between the de-
fender’s utility of a strategy s1 in game G′ and the defender’s utility of the same
strategy in game G to be u∆G(s1) = 1

|G|
∑

G∈G u1(s1, s′
2|G′ ← G)−u1(s1, s2|G).

In u∆G(s1), strategy profiles s and s′ are always computed by the same al-
gorithm. Finally, we define the same average difference for s1 and the best
response opponent as uβ

∆G(s1) = 1
|G|

∑
G∈G u1(s1, β′|G′ ← G)− u1(s1, s2|G).
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5. Experimental Evaluation................................
These measurements enable us to detect games, where the optimal strategy
changes drastically with the addition of hidden vulnerabilities.

SFLP CFR NFSP NashConv

SFLP ud 0 -0.0055816 -0.0167958 4e-9CI [0, 0] [−0.0132, 0.002] [−0.0909, 0.0573]

CFR ud -0.0082658 -0.0137724 -0.026565 0.000844CI [−0.027, 0.0105] [−0.0326, 0.005] [−0.1009, 0.0477]

NFSP ud -0.0136148 -0.0184302 -0.0229209 0.028352CI [−0.0425, 0.0153] [−0.0479, 0.011] [−0.0991, 0.0532]
NashConv 6e-9 0.001772 0.056109

Table 5.1: ud(s1, s′
2) in trivial games

In Tables 5.1 and 5.3 ud(s1, s′
2), its 95% confidence interval (denoted CI)

and NashConv of the individual algorithms are presented. The algorithm
used to compute s1 is located in the table row, whereas the algorithm used
to compute s′

2 is located in the table column. We also average the obtained
differences against all the opponent algorithms to obtain an "opponent in-
dependent" ud(s1, s′

2). These opponent independent ud(s1, s′
2), as well as

uβ
d (s1, β′

2), u∆G(s1), uβ
∆G(s1) and their 95% confidence intervals are presented

in Tables 5.2 and 5.4. Lastly, u∆G(s1) and uβ
∆G(s1) were approximated on

the large games via policy-dependent game tree traversals. These results and
their confidence intervals are presented in Table 5.5.

ud(s1, s′
2) uβ

d (s1, β′
2) u∆G(s1) uβ

∆G(s1)

SFLP u -0.0075 0 -0.4589 -0.6619
CI [−0.0293, 0.0144] [0, 0] [−0.7821,−0.1357] [−1.0041,−0.3197]

CFR u -0.0162 -0.4722 -0.3507 -0.6962
CI [−0.0393, 0.0069] [−0.0917, 0.0221] [−0.788,−0.1563] [−1.0012,−0.3912]

NFSP u -0.0183 -0.0186 -0.4646 -0.6633
CI [−0.0435, 0.0069] [−0.1035, 0.0663] [−0.7648,−0.1645] [−0.9571,−0.3696]

Table 5.2: Average differences in utilities in trivial size games

SFLP CFR NFSP NashConv

SFLP ud 0 -0.1789 -0.2149 3.4e-8CI [0, 0] [−0.4233, 0.0655] [−0.4955, 0.0656]

CFR ud -0.0012 -0.1817 -0.2308 0.000321CI [−0.0065, 0.004] [−0.4256, 0.0622] [-0.5073, 0.0458]

NFSP ud -0.0033 -0.1624 -0.2167 0.033666CI [−0.1402, 0.1336] [−0.4338, 0.1091] [−0.5244, 0.0911]
NashConv 9e-9 0.043338 0.000543

Table 5.3: ud(s1, s′
2) in medium-sized games

26



.................................. 5.1. Lateral Movement

ud(s1, s′
2) uβ

d (s1, β′
2) u∆G(s1) uβ

∆G(s1)

SFLP u -0.1313 0 -0.1693 -0.6616
CI [−0.2452,−0.0173] [0, 0] [−0.4125, 0.074] [−1.005,−0.3181]

CFR u -0.1379 -0.0566 -0.3507 -0.7179
CI [−0.2515,−0.0243] [−0.1548, 0.0416] [−0.704, 0.0025] [−1.0425,−0.3933]

NFSP u -0.1274 -0.0005 -0.3628 -0.639
CI [−0.2579, 0.003] [−0.1812, 0.1801] [−0.6104,−0.1153] [−0.9017,−0.3763]

Table 5.4: Average differences in utilities in medium-sized games

u∆G(s1) uβ
∆G(s1)

NFSP u∆G -0.0587 -0.232
CI [−0.215, 0.0975] [−0.5061, 0.0422]

Table 5.5: Average differences in utilities in large games

To provide concrete values, for our leading example from Figure 3.1, since
u1(s1, s2|G) = 0.1253 and u1(s1, s′

2|G′ ← G) = −0.2936, u∆G(s1) = −0.4189.
Similarly, because u1(s1, s2|G) = 0.1253 and u1(s1, β′|G′ ← G) = −0.9663,
uβ

∆G(s1) = −1.0916. We can see that the game dynamic has shifted from
the defender being able to always prevent the attacker from reaching the
terminal node, to being able to do so only sometimes. Additionally, the
utility against the best responder is close to being the worst possible. Our
experiments provide us with a couple of interesting observations. First, since
our assumption that the variance of differences would be very low was not
entirely accurate and the number of samples is only 10, the confidence intervals
are in some cases quite large, therefore more experiments would need to be
conducted in order to achieve high statistical significance. Still, from our
observations, there do not seem to be stark differences between the defender’s
utilities obtained by the individual algorithms used for Nash equilibrium
computation. Out of the three algorithms, SFLP provides solutions with
the slightest decrease in utility when applied to game G′ in medium-sized
games but that is presumably due to the fact that s′

2 found by SFLP was
weaker than the s′

2 strategies computed by CFR and NFSP not because the s1
SFLP strategy was stronger. Additionally, when the number of information
sets increases, NFSP produces better ud(s1, s′

2) against the various Nash
equilibrium opponents than SFLP and is comparable in terms of uβ

d (s1, β′
2).

This may be due to the fact that NFSP is the only algorithm out of the three
which is able to generalize its policy on information sets encountered in G′ for
the first time, whereas CFR and SFLP play uniform random policies in these
information sets. Moreover, CFR provides on average worse solutions than
SFLP in both observed classes of games. Second, the u∆G(s1) and uβ

∆G(s1)
are both quite significant - especially in the smaller classes of games. We
believe this is due to the fact that if the graph is relatively sparse, there
are bottlenecks in the graphs that the defender may completely cover with
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5. Experimental Evaluation................................
honeypots. The attacker then has no other choice but to use the honeypotted
edges. Whenever edges that enable the attacker to avoid these bottlenecks
are introduced in G′, the defender’s strategy becomes far from optimum and
the defender’s expected utility decreases significantly. One benefit of this
occurrence is that the defender should be able to observe that their policy is
performing worse than expected and modify their current policy to adapt to
the change in the game dynamics. Additionally, the occurrence of bottlenecks
seems to become less common in large games and as a result, the differences
in expected utilities of policies obtained on G and G′ are smaller but still
observable.

In order to obtain better utilities in G′, we considered multiple modifications
to our approach. First, we considered adding specific edges to G to create
G′′ which would be closer to G′ than G. However, the choice of nodes
these edges connect without any prior knowledge of G′ is unclear. One such
approach would be to consider a complete graph, however, that increases the
computational complexity exponentially as the size of the graph increases.
Another option is to detect bottlenecks in G and introduce specific edges
that enable the attacker to bypass them. This would encourage the defender
to adopt a different strategy than exploiting these bottlenecks. A problem
with this approach is that in games without bottlenecks, there is no such
choice of hidden edges. Fortunately, if that is the case, the u∆G(s1) results
are better than in graphs with bottlenecks, therefore not altering G might be
an option. This direction might be a topic of further research, however, the
highlighted problems caused us to pursue a different direction. We chose a
modification of G which is simpler and serves the same purpose of encouraging
the defender to adopt a more robust strategy. We do this by introducing
chance to the game. A honeypot has a fixed probability of a defect. If a
honeypot defects, the attacker’s advance through the graph is uninterrupted,
and the defender receives no information about the attacker’s movement. The
results of this approach are discussed in Section 5.2. The third avenue is a
reinforcement learning approach of online policy adaptation in the full game
G′. This approach and its limitations are discussed in Section 5.3.

5.2 Lateral Movement with Defect

The same set of experiments as in the previous section was conducted with
the exception that instead of using a Nash equilibrium defender’s strategy
from game G (i.e. s1) in game G′, a Nash equilibrium strategy from game
G′′ was used (i.e. s′′

1). The difference between G′′ and G is that when-
ever the attacker uses a honeypot, it might defect according to a given
probability distribution. When a honeypot defects, the attacker contin-
ues in infecting the computer network uninterrupted and the defender is
not notified of the attacker’s progress. Game G′′ does not contain hid-
den vulnerabilities. Instead of the measurements observed in the previ-
ous experiments, we measure the average difference between utilities of
s′′

1 and s1 in game G′. We denote this difference against a Nash equilib-

28



............................. 5.2. Lateral Movement with Defect

rium attacker ∆u1(s′′
1, s′

2|G′) = 1
|G′|

∑
G′∈G′ u1(s′′

1, s′
2|G′)− u1(s1, s′

2|G′). Simi-
larly, the difference in utilities against a best responder is ∆u1(s′′

1, β′
2|G′) =

1
|G′|

∑
G′∈G′ u1(s′′

1, β′
2|G′) − u1(s1, β′

2|G′). The differences in utilities always
relate to strategies learned by the same set of algorithms on both games G
and G′′. For the experiments presented in this work, we used the defect rate
of 10%, however, no major differences were observed when other defect rates
were used. It seems that the main difference lies in new information states
being reachable, not in the probability of reaching them. In Tables 5.6 and
5.8, are presented ∆u1(s′′

1, s′
2|G′) of each of the algorithms against all the

others and their 95% confidence intervals. The defender’s algorithm is located
in the rows of said tables and the attacker’s algorithm is in the columns.
Tables 5.7, 5.9, and 5.10 depict the differences in utilities averaged across all
opponents and their confidence intervals.

SFLP CFR NFSP NashConv

SFLP ∆u1 0.1024 0.1036 0.091 1e-8CI [−0.1283, 0.3331] [−0.1265, 0.3338] [−0.1286, 0.3107]

CFR ∆u1 0.1049 0.1059 0.0955 0.00067CI [−0.1215, 0.3313] [−0.1199, 0.3318] [−0.1199, 0.3108]

NFSP ∆u1 0.0679 0.0683 0.0568 0.028955CI [−0.0872, 0.223] [−0.0865, 0.2231] [−0.094, 0.2076]
NashConv 7e-9 0.001772 0.049266

Table 5.6: ∆u1(s′′
1 , s′

2|G′) in trivial games with defect

∆u1(s′′
1, s′

2|G′) ∆u1(s′′
1, β′

2|G′)

SFLP ∆u1 0.099 0.1526
CI [−0.0153, 0.2133] [−0.0945, 0.3997]

CFR ∆u1 0.1021 0.1697
CI [−0.01, 0.2142] [−0.0643, 0.4036]

NFSP ∆u1 0.0643 0.1028
CI [−0.0131, 0.1417] [−0.0554, 0.2609]

Table 5.7: Average differences in utilities in trivial size games with defect

SFLP CFR NFSP NashConv

SFLP ∆u1 -0.0101 -0.0624 -0.0143 6.8e-8CI [−0.3552, 0.3351] [−0.4487, 0.324] [−0.293, 0.2643]

CFR ∆u1 -0.033 -0.0554 -0.0048 0.000454CI [−0.3828, 0.3168] [−0.4434, 0.3326] [−0.2664, 0.2568]

NFSP ∆u1 -0.085 -0.101 -0.0238 0.033948CI [−0.3174, 0.1473] [−0.3482, 0.1462] [−0.2297, 0.1821]
NashConv 3e-9 0.000368 0.04868

Table 5.8: ∆u1(s′′
1 , s′

2|G′) in medium-sized games with defect

29



5. Experimental Evaluation................................
∆u1(s′′

1, s′
2|G′) ∆u1(s′′

1, β′
2|G′)

SFLP ∆u1 -0.0289 0.2276
CI [−0.2002, 0.1424] [−0.1918, 0.6471]

CFR ∆u1 -0.0311 0.2785
CI [−0.2011, 0.139] [−0.0922, 0.6491]

NFSP ∆u1 -0.0699 0.1277
CI [−0.186, 0.0461] [−0.0841, 0.3395]

Table 5.9: Average differences in utilities in medium-sized games with defect

∆u1(s′′
1, s′

2|G′) ∆u1(s′′
1, β′

2|G′)

NFSP ∆u1 0.0106 0.0039
CI [−0.1414, 0.1625] [−0.3131, 0.3209]

Table 5.10: Average differences in utilities in large games with defect

To provide concrete values, for our leading example, we observed that
u1(s′′

1, s′
2|G′) = −0.5389 and u1(s1, s′

2|G′) = −0.2936, therefore ∆u1(s′′
1, s′

2|G′) =
−0.2453. Similarly, since u1(s′′

1, β′|G′) = −0.9663 and u1(s1, β′|G′) = −0.9663,
∆u1(s′′

1, β′
2|G′) = 0.0. In this case, the introduction of change provided an

equilibrium strategy with lower utility in G′ and the utility against the best
responder stayed the same. Generally, the defender adopts more robust
strategies in G′′ than in games without defect, therefore the utility against
a best responder improves considerably in trivial and medium-sized games.
Interestingly, in medium-sized games, the average utility against a Nash equi-
librium opponent decreases, hence this approach does not produce universally
superior strategies to the approach presented in Section 5.1. In trivial and
large games, however, the utilities against a Nash equilibrium opponent on
average improve, although in large games only by a small amount. Similarly,
the improvement against a best responder in large games is also lower than
in smaller games. This is presumably due to the fact that most information
states in game G were reachable and bottlenecks were absent in these large
domains, therefore the introduction of defect did not influence the game
dynamics in the same way it did in games of smaller sizes. More experiments
would need to be conducted to provide tighter confidence intervals and in-
crease the statistical significance of the found results. Nevertheless, according
to our findings, s′′

1 seems to be more robust than s1 in G′, making it a better
choice in most cases.

5.3 Local Policy Search

In addition to improving the expected defender’s utility by altering game
G, we wanted to also explore an online reinforcement learning approach in
the space of all possible policies. That, however, proves to be challenging
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because of several reasons. First, to begin the exploration of the space of
possible policies the agent needs to be able to alter its current policy via
actions. In the specification of these actions lies the first major complication.
The agent needs to be able to alter the probability of playing an action in
each information set by an arbitrary amount. To this end, the policy over
all information sets may be represented by a tuple of size |I| × |A| to which
arbitrary tuples of the same dimensions could be added. This makes for
a continuous action space. One way to deal with the selection of actions
in a continuous action space is to discretize the action space and proceed
to solve it using algorithms for discrete problems (Dougherty et al., 1995).
The choice of a discretization method is, however, generally unclear and the
performance of such an approach may vary dramatically based on the chosen
discretization method. Moreover, it severely limits the options available to the
agent making it often impossible to learn optimal policies. Another way is to
choose the actions via function approximators parametrized by the agent (van
Hasselt and Wiering, 2007). This approach faces challenges in the choice of a
function approximator (prevalently neural networks) and in the optimization
of the function approximator parameters. While both of these approaches are
theoretically sound, the size of our problem for nontrivial games makes these
approaches most likely infeasible and therefore discourages us from applying
them to our domain in this work. The problem is additionally complicated
by the fact that without any a priori knowledge of the game, the estimation
of a player’s utility requires a large number of rollouts in order to achieve
reasonable precision. Conversely, if a model of the game was available to
the defender, conventional algorithms for finding Nash equilibria might be
employed. Consequently, we opted for a localized search around the found
solution on the partial game instead of an extensive reinforcement learning
approach. This simple approach forsakes optimality guarantees in favor of a
feasible size computation and a relatively small number of policy evaluations.
The results of the localized search might produce an improvement to the
found strategy or confirm that no simple improvement of the policy exists,
making it a local maximum.

We assume the attacker’s policy to be fixed. We use an iterative algorithm
that in each iteration generates a new policy from s′′ that differs from s′′ only
in one information set. This modification takes the form of a 5% increment
in a subset of the legal actions and a 5% decrement in a disjoint subset of
legal actions of equal size. We generate all combinations of such subsets using
combination sum. Subsequently, the new policies are evaluated in game G′

against a Nash equilibrium player and a best responder. If an improvement
to the defender’s utility is obtained, the new improved strategy becomes the
optimum strategy and can be modified again in the same fashion. In our
experiments, we use exact evaluation. A similar result might be achieved
by using an approximate evaluation utilizing repeated game tree traversals,
however, there is a minor difficulty arising from the estimate quality. If the
increase in utility is small, the approximate evaluation might estimate the
utility to be slightly lower than the current maximum and consequently not
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5. Experimental Evaluation................................
update the current strategy. Conversely, a minor decrease in utility might
be estimated to be a minor increase and the policy might worsen. Since the
number of information sets raises rapidly as the size of the game increases,
we prioritize information sets with the highest reachability according to the
current strategy profile. We do this to explore policies in information sets
that contribute to the defender’s utility the most. The algorithm terminates
after a specified number of iterations or whenever the defender’s utility can-
not be further improved in the described manner. Additionally, computing
combination sum for the large games is infeasible making this version of
uninformed search inapplicable to these games. As in the previous section,
we present the average difference in utility between the defender’s strategy
s′′

1 and its improved version. We denote the newly found strategy ŝ′′
1. Sub-

sequently, we define ∆u1(ŝ′′
1, s′

2|G′) = 1
|G′|

∑
G′∈G′ u1(ŝ′′

1, s′
2|G′)− u1(s′′

1, s′
2|G′)

and ∆u1(ŝ′′
1, β′

2|G′) = 1
|G′|

∑
G′∈G′ u1(ŝ′′

1, β′
2|G′)− u1(s′′

1, β′
2|G′). Additionally,

we show 95% confidence intervals of these average utilities, the estimated
number of policy evaluations needed during the search, and the percentage
of explored information sets of the game. These metrics are presented in
Tables 5.11 and 5.12. Due to limited computational resources, we present
these differences only on strategies obtained in self-play by CFR and SFLP,
i.e. both (s′′

1, s′′
2) and (s′

1, s′
2) were computed by the same algorithm.

∆u1(ŝ′′
1, s′

2|G′) ∆u1(ŝ′′
1, β′

2|G′)

SFLP

∆u1 0.1118 0.6824
CI [−0.0424, 0.2659] [0.3735, 0.9914]

Iter. 138 173
Exp. 100 % 100 %

CFR

∆u1 0.1226 0.6977
CI [−0.0277, 0.2729] [0.394, 1.0013]

Iter. 1210 1479
Exp. 100% 100 %

Table 5.11: Differences between utilities in trivial games

∆u1(ŝ′′
1, s′

2|G′) ∆u1(ŝ′′
1, β′

2|G′)

SFLP

∆u1 0.1934 0.1993
CI [−0.035, 0.4219] [−0.0413, 0.4398]

Iter. 15260 17091
% Exp. 2.5% 1.9%

CFR

∆u1 0.234 0.2669
CI [−0.0049, 0.473] [0.0197, 0.5141]

Iter. 148300 159719
Exp. 2.5% 2.9%

Table 5.12: Differences between utilities in medium-sized games
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For our leading example, we observed that u1(ŝ′′
1, s′

2|G′) = 0.02323 and
u1(s′′

1, s′
2|G′) = −0.5389, therefore ∆u1(ŝ′′

1, s′
2|G′) = 0.5621. Similarly, since

u1(ŝ′′
1, β′

2|G′) = −0.6589 and u1(s′′
1, β′|G′) = −0.9663, ∆u1(ŝ′′

1, β′
2|G′) =

0.3074. The observed results show a significant increase in average utili-
ties against both Nash equilibrium opponent and a best responder. In trivial
games, all of the information sets are explored, therefore producing a policy
with utility close to the utility of the optimal policy in game G′. However,
unlike the optimal policy, ŝ′′

1 may be exploitable. Even in medium-sized
games, where only a very limited number of information sets are explored,
this approach produces major improvements. According to our results, SFLP
evaluates fewer policies than CFR presumably due to the fact that its policy
assigns positive probabilities to a lesser amount of actions and due to the fact
that combinations not representing probabilities are pruned (e.g. combina-
tions with negative values). Nevertheless, the number of policy evaluations
is still high. In future work, the relation between the number of policy
evaluations needed and expected utility improvement could be explored. If
a way to explore the state of possible policies in an efficient way were to be
developed and the utility approximation precision was to be increased, this
approach would provide policies with the highest utilities.
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Chapter 6
Conclusion

Game theory is a powerful framework for reasoning about optimal policies
in environments, where multiple agents interact with one another. One of
its requirements, however, is having precise information about the studied
domain. In network security, this requirement might be difficult to fulfill as
not all vulnerabilities present in the computer network may be known to
the defender. We model such a scenario in computer security using directed
acyclic graphs and game theory. We demonstrate that often the optimal
strategy according to the information about the computer network available
to the defender yields on average much lower utilities against an attacker with
full information than the defender expects. We also compared the strength
of the defender’s policies obtained by several algorithms in a game with
hidden vulnerabilities and found these policies comparable in terms of their
strength. Additionally, we have detected that in games, where bottlenecks
exist, the expected utility of the defender’s policy decreases dramatically. We
have introduced a method for the computation of more robust strategies by
introducing a chance of honeypot defect into the game and compared the
quality of its results with results obtained on games without defect. Even
though the consequent policies were in fact more robust and achieved better
average utilities against a best responder, they did not always perform better
against a Nash equilibrium player preventing it from being a universally
superior approach for defender policy computation. We have also highlighted
an additional approach for robust policy computation via adding additional
edges to the graph available to the defender and showcased the problems of
this approach. Furthermore, we have studied an online policy adaptation
of the defender’s policy against a fixed attacker’s policy after deployment
into the target network. We have discussed complications related to this
method arising from the size of the space of all possible policies and the
need for a large number of game playthroughs for accurate expected utility
estimates. We have presented an algorithm for an uninformed local policy
search that yields on average significantly better policies than those computed
on the game without hidden vulnerabilities but is inapplicable to large
domains. These findings provide further insight into the problem faced by
computer network administrators hardening their designated networks against
adversarial attacks and provide tools to improve the quality of a solution
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6. Conclusion......................................
obtained with limited information about the vulnerabilities in the computer
network. There, however, still exists a number of issues that need to be
addressed in future research to increase the scalability of such approaches and
decrease the number of playthroughs required for online policy adaptation.
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Appendix B
Experimental settings

In this section we cover hyperparameter settings used in our experiments.
The names of the hyperparameters and their values are taken directly from
the project’s code. For each hyperparameter configuration from Table B.1 a
pair of graphs was created, one having enable_hidden parameter set to true
(game G′ with hidden vulnerabilities), and the other having it set to false
(game G without the hidden vulnerabilities). Additionally, whenever defect
was introduced to the game, G had the defect_rate hyperparameter set to
0.1. The defect_rate of G′ was always set to 0.

Parameter Trivial Medium Large
num_nodes 5 6 8 16 18

num_honeypots 1 2 3 4 4
num_stages 1 2 1 4 3

density 2 2 2 3 4
num_hidden_edges 1 2 3 5 5

Table B.1: Hyperparameters for graph creation

We used {0, 1, 2, 3, 4, 9, 11, 13, 17, 18} as seeds for the trivial graphs. In
the medium-sized graphs 6 nodes case, the set of seeds was {0, 3, 4, 6, 10},
and {15, 20, 37, 42, 60} was the set of seeds in the 8 nodes case. As to the
large games, the seeds for the 16 nodes case were {1, 2, 6, 10, 11}, and lastly,
for the 18 nodes case, they were {196, 268, 297, 440, 563}. The seeds were
chosen in such a way that the sets of edges in the individual graphs were
unique.

In terms of the algorithm hyperparameters we used the default OpenSpiel
linear programming solver settings for SFLP. Concerning CFR, the number of
iterations was 2000 in both trivial games and medium-sized games. Hyperpa-
rameters for NFSP are depicted in Table B.2. Amongst the hyperparameters
for NFSP are also included hyperparameters for the underlying DQN network
for state-action value estimation.
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B. Experimental settings .................................
Parameter Trivial Medium Large

num_train_episodes 1.6 · 106 2.4 · 106 1.25 · 106

batch_size 64
replay_buffer_capacity 2 · 105

anticipatory_param 0.2
hidden_layers_sizes [64] [64] [64, 64, 64]

reservoir_buffer_capacity 2 · 105

epsilon_start 0.06
epsilon_end 0.001

rl_learning_rate 0.01
sl_learning_rate 0.01

min_buffer_size_to_learn 1000
learn_every 64

optimizer_str sgd
epsilon_decay_duration 1.6 · 106 2.4 · 106 1.25 · 106

loss_str mse
update_target_network_every 1000

discount_factor 1

Table B.2: NFSP hyperparameters

Regarding policy evaluation in large games, 105 random game tree traver-
sals were used in order to approximate the defender’s utility. Additionally,
Table B.3 shows the hyperparameters used by DQN for the best response
policy approximation.

num_train_episodes 1.28 · 105

hidden_layers_sizes [64, 64, 64]
replay_buffer_capacity 2 · 105

batch_size 64
learning_rate 0.1

update_target_network_every 1000
learn_every 10

discount_factor 1
min_buffer_size_to_learn 1000

epsilon_start 1.0
epsilon_end 0.1

epsilon_decay_duration 1.28 · 105

optimizer_str sgd
loss_str mse

Table B.3: DQN hyperparameters for the best response approximation
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Appendix C
Code Structure

This section details the code structure of the project. However, for the sake
of brevity, we do not cover the entirety of the OpenSpiel source code, only
the files newly created for the purposes of this work.

openspiel

openspiel

games

lateral_movement.cc

lateral_movement.h

lateral_movement_test.cc

python

examples

lm_cfr.py

lm_deep_cfr.py

lm_dqn.py

lm_exploitability_descent.py

lm_nfsp.py

lm_policy_evaluation_approximate.py

lm_policy_evaluation_exact.py

lm_policy_search.py

lm_sflp.py

algorithms

approximate_evaluation.py
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C. Code Structure....................................
Files lateral_movement.cc and lateral_movement.h contain the imple-

mentation of the lateral movement domain itself. Tests for the generation of
the two information set representations, rewards, as well as tests for integration
into the OpenSpiel framework, are located in lateral_movement_test.cc.
Solvers for Nash equilibrium strategies using the various algorithms mentioned
in Chapter 4 can be found in lm_cfr.py, lm_deep_cfr.py, lm_exploitabili-
ty_descent.py, lm_nfsp.py and lm_sflp.py. Script lm_policy_evalua-
tion_exact.py was used for the experiments conducted on trivial and
medium-sized games. Similarly, lm_policy_evaluation_approximate.py
was used for the experiments conducted on the large domains in combination
with the auxiliary programs in approximate_evaluation.py and lm_dqn.py
which were used for the defender’s expected utility approximation and best
response approximation, respectively. Lastly, lm_policy_search.py was
utilized for the online improvement of the found policy.
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